MHz OCT: Why faster is better

Article

Advances in technology should improve current OCT shortcomings

When we first used optical coherence tomography (OCT) in the early 90s, images were pixelated and even the retina borders sometimes difficult to distinguish. Technology was time domain, enabling approximately 600 single A-Scans per second. Generating retina maps at this speed required considerable interpolations. Nevertheless, this technology allowed novel insights into the retina and thus started to be implemented into clinical routine.

By about 2003, spectral domain OCTs started to improve scan speed to 20000–50000 A-scans per second. This enabled denser sampling in the X–Y plane and features such as 3D presentation of data cubes. Especially when combined with eye-tracking, this spectral domain technology allowed for clearly improved repeatability and follow-up examinations. Therefore, this technology has become standard for clinical evaluation and follow-up today.

Shortcomings remain

Another relevant point appears to be fundus image quality: When obtained by simple infrared camera imaging, image quality is usually not very good, while adding modalities like a scanning laser ophthalmoscope (SLO) or photo adds to system complexity and system costs.

There are several reasons, why in the future ophthalmic OCT technology may move from Spectral Domain OCT to systems based on wavelength swept lasers (swept source OCT: SS-OCT). One argument is the dramatically higher imaging speed that can be achieved with SS-OCT, especially using so called FDML lasers.

FDML lasers

Fourier Domain Locking (FDML) of lasers for swept source was first published in 2006 by Dr R. Huber at J.G. Fujimoto's lab and he continued to work on this new type of laser. One of the major advantages of this technology is that scan speed in the megahertz range is feasible today.

Leading a laser and imaging group at the faculty of physics (Institute for Biomolecular Optics, BMO) of Ludwig-Maximilians-University in Munich, Dr Huber developed several OCT applications based on this swept source FDML approach. In collaboration with the department of ophthalmology, we jointly defined a system capable of imaging up to 60° × 60° by OCT without pupil dilation. Given the current scan speed of ~1.68 MHz, this system is >40 times faster than usual spectral domain OCT systems today.

Newsletter

Join ophthalmologists across Europe—sign up for exclusive updates and innovations in surgical techniques and clinical care.

Recent Videos
Alfredo Sadun, MD, PhD, chief of Ophthalmology at the Doheny Eye Institute, University of California Los Angeles, shared exciting new research with the Eye Care Network during the Association for Research in Vision and Ophthalmology (ARVO) meeting on the subject of Leber hereditary optic neuropathy (LHON).
At this year's Association for Research in Vision and Ophthalmology (ARVO) meeting in Salt Lake City, Utah, Nitish Mehta, MD, shared highlights from his research documenting real-world results of aflibercept 8 mg for patients with diabetic macular oedema.
ARVO 2025: Anat Loewenstein, MD, shares data from herself and her colleagues on meeting needs of patients with diabetic retinopathy
At the American Society of Cataract and Refractive Surgeons annual meeting, Sheng Lim, MD, FRCOphth discusses the benefit of endoscopic cyclophotocoagulation for patients with primary open angle glaucoma and cataracts in the CONCEPT study
A photo of Seville, Spain, with the Congress on Controversies in Ophthalmology logo superimposed on it. Image credit: ©francovolpato – stock.adobe.com; logo courtesy COPHy
Anat Loewenstein, MD, Professor and Director, Department of Ophthalmology, Tel Aviv Medical Center, discusses the Congress on Controversies in Ophthalmology (COPHy)
(Image credit: Ophthalmology Times Europe) AGS 2025: Clemens Strohmaier, PhD, on improving aqueous humour outflow following excimer laser trabeculostomy
3 experts are featured in this series.
Anat Loewenstein, MD, speaks about the 22nd Annual Angiogenesis, Exudation, and Degeneration Meeting in February 2025 and shares her global forecast for AI-driven home OCT
3 experts are featured in this series.
Related Content
© 2025 MJH Life Sciences

All rights reserved.