Investigating regenerative potential of retinal cells

Article

Investigators from The Scripps Research Institute, and Thomas Reh, PhD from the University of Washington, received the highest possible scores for their proposal to investigate the regenerative potential of retinal cells, resulting in a $4.66 million NIH Transformative Award.

Zhang and co-principal investigators Sheng Ding, PhD, from The Scripps Research Institute, and Thomas Reh, PhD from the University of Washington, received the highest possible scores for their proposal to investigate the regenerative potential of retinal cells, resulting in a $4.66 million NIH Transformative Award. Their long-term goal is to restore visual function lost through diseases such as macular degeneration and retinitis pigmentosa.

“The success of this work could mean a paradigm shift in how retinal disease is treated, and could have broad and profound impact on human disease therapies by utilizing the regenerative power of our own cells,” said Zhang.

Some vertebrates, such as goldfish and newts, have a remarkable ability to regenerate a lost limb or eye - something it was thought no mammal can do. However, they recently showed proof of principle at a small-scale level in mice by turning Muller cells into a type of retinal neuron.

“The human genome is quite similar to that of a newt, but we humans seem to have lost the potential to regenerate our own cells, possibly due to some inhibitory mechanims,” Zhang said. “We are seeking small molecule chemicals that can block these inhibitions and consequently unlock humans' regenerative potential.”

The researchers are looking at particular kinds of cells called Muller cells, which are abundant and have the ability to regenerate nerve cells after retinal injury in fish, they usually play a supporting role in the central nervous system neurons of humans, such as those present in the eye or brain. This study proposes to use chemicals to turn Muller cells into photoreceptors in the eye - cells that are lost in two diseases that are leading causes of blindness, macular degeneration and retinitis pigmentosa.

Identification of chemicals for Muller cells reprogramming and differentiation will provide new avenues in developing cell-based therapy as well as small molecule drugs for regenerative medicine, and facilitate new understanding of the mechanisms of trans-differentiation, according to the scientists. They plan to screen more than 100,000 compounds in order to identify the chemicals that prompt mouse Muller glia to develop new neurons, conferring the power of regeneration to the mammalian retina.

Newsletter

Join ophthalmologists across Europe—sign up for exclusive updates and innovations in surgical techniques and clinical care.

Recent Videos
Christine Curcio, PhD, of the University of Alabama at Birmingham Heersink School of Medicine, shares histology update and revised nomenclature for OCT with Sheryl Stevenson of the Eye Care Network and Ophthalmology Times
SriniVas R. Sadda, MD, FARVO, shares key points from his retina presentation at the International SPECTRALIS Symposium
Robert Sergott, MD, describes fluorescence lifetime imaging ophthalmoscopy (FLIO) and the International SPECTRALIS Symposium – And Beyond (ISS) in Heidelberg, Germany.
Rayaz Malik, MBChB, PhD, a professor of medicine at Weill Cornell Medicine - Qatar, spoke with Ophthalmology Times Europe about his presentation. It's titled "An eye on neurodegenerative diseases: Challenging the dogma" at the International SPECTRALIS Sympsoium. In conversation with Hattie Hayes, Ophthalmology Times Europe
Anat Loewenstein, MD, describes her presentation on remote imaging for age-related macular degeneration and geographic atrophy at the International SPECTRALIS Symposium, in conversation with Hattie Hayes of Ophthalmology Times Europe
Tyson Brunstetter, OD, PhD, a US Navy Aerospace Optometrist at the NASA Johnson Space Center in Houston, Texas, shares key takeaways from his keynote at the International SPECTRALIS Symposium (ISS)
Rayaz Malik, MBChB, PhD, shares his presentation, titled An eye on neurodegenerative diseases: Challenging the dogma, at this year's International SPECTRALIS Symposium
At the Retina World Congress, Siegfried Priglinger, MD, speaks about ensuring the best outcomes for preschool-aged patients
At the 2025 ASCRS meeting, Robert Ang, MD said small aperture IOLs can benefit all patients, especially those with complex corneas or who have undergone previous corneal refractive surgery
Viha Vig, MBChB graduate student at the University of Auckland, New Zealand, discusses her poster presentation on the relationship between mitochondiral disease, Alzheimer disease, and other types of dementia.
© 2025 MJH Life Sciences

All rights reserved.