Artificial cornea could reach patients this year

Article

Dr Joachim Storsberg at the Fraunhofer Institute for Applied Polymer Research in Germany has developed an artificial cornea. The ophthalmological polymer is designed to bond to the eye but remain unclouded by cells in its centre.

Dr Joachim Storsberg at the Fraunhofer Institute for Applied Polymer Research in Germany has developed an artificial cornea. The ophthalmological polymer is designed to bond to the eye but remain unclouded by cells in its centre. Each year, 40,000 people in Europe are waiting for cornea donors. But donor corneas are not common.

The miniscale artificial cornea has to meet almost contradictory specifications: On the one hand, the material should grow firmly together with the cells of the surrounding tissue; on the other hand, no cells should settle in the optical region of the artificial cornea - i.e., the middle - since this would again severely impair the ability to see. The outer side of the implant must be able to moisten with tear fluids, otherwise the implant will cloud up on the anterior side. This would consequently require the patient to get a new prosthesis after a relatively brief period of time. The outer side of the implant must be able to moisten with tear fluid, so that the eyelid can slide across it without friction. Dr Storsberg found the solution with a hydrophobic polymer material. This material has been in use for a long time in ophthalmology, for example, in intraocular lenses. In order for it to satisfy the various characteristics required, complex development steps were necessary. The material was thoroughly modified on a polymer-chemical basis, and subsequently re-tested for public approval.

In order to achieve the desired characteristics, the edge of the implant was first coated with various, special polymers. Then, a special protein was added that contains the specific sequence of a growth factor. The surrounding natural cells detect this growth factor, are stimulated to propagate and populate the surface of the corneal margin. Thus, the cells of the surrounding tissue grow with the implant, and the artificial cornea attains stability. The eye prosthesis evolved jointly with physicians and manufacturers in the EU project, Artificial Cornea. The interdisciplinary research team needed three years to develop the artificial cornea. In a first step, they sent the chemical-biomimetic coated implant to Dr Karin Kobuch of the Poliklinik für Augenheilkunde at the Regensburg University Medical Centre and to the medical centre at the Technical University of Munich. The doctor examined the artificial corneas in dissected pigs eyes and specialized cell cultures. Eventually, the team under Dr Gernot Duncker and Dr Saadettin Sel of the University Centre for Ophthalmology in Halle (Saale) tested the more complex models in rabbits. There, the design was further refined: the optics were made smaller, and the implant haptic enlarged in order to maintain a more stable construction. Miro GmbH manufactured the implant, robin GmbH handled the distribution and sales and supported the specially adapted implantation centers in Europe. By 2009, a prosthesis was already successfully in use; further implantations are anticipated during the coming months of 2010.

Recent Videos
Charles Wykoff, MD, PhD, discusses his Floretina ICOOR presentation topic, retinal non-perfusion in diabetic retinopathy, with David Hutton, editor of Ophthalmology Times
Elizabeth Cohen, MD, discusses the Zoster Eye Disease study at the 2024 AAO meeting
Victoria L Tseng, MD, PhD, professor of ophthalmology and glaucoma specialist, UCLA
Brent Kramer, MD, of Vance Thompson Vision speaks at the 2024 AAO meeting
© 2024 MJH Life Sciences

All rights reserved.