Studies implicate photoreceptor mitochondria as initiator in uveitis-associated vision loss

Article

Mitochondrial oxidative stress induced by translocation of inducible nitric oxide synthetase (iNOS) from the cytosol into the photoreceptor mitochondria appears to be a primary event leading to photoreceptor damage in experimental autoimmune uveitis (EAU), said Narsing A. Rao, MD, professor of ophthalmology, and director, ophthalmic pathology laboratory and uveitis service, University of Southern California, Los Angeles.

Mitochondrial oxidative stress induced by translocation of inducible nitric oxide synthetase (iNOS) from the cytosol into the photoreceptor mitochondria appears to be a primary event leading to photoreceptor damage in experimental autoimmune uveitis (EAU), said Narsing A. Rao, MD, professor of ophthalmology, and director, ophthalmic pathology laboratory and uveitis service, University of Southern California, Los Angeles.

"Epidemiologic studies show that complications of uveitis, particularly photoreceptor degeneration, are an important cause of vision loss," said Dr. Rao, who spoke during a symposium on mitochondrial oxidative stress in the visual system. "Based on previous investigations in EAU, the photoreceptor damage was thought to be caused by infiltrating macrophages releasing damaging oxidants.

"However, contradicting that dogma, we previously showed evidence that photoreceptor mitochondrial stress was present several days prior to infiltration of the phagocytic cells," Dr. Rao said. "Further studies now support the concept that the photoreceptor mitochondria are responsible for initiating the irreversible retinal damage occurring in EAU."

EAU, an animal model of uveitis that closely mimics the human disease, is created by immunizing Lewis rats with retinal soluble protein S-antigen. Dr. Rao described the findings from a series of EAU studies using wild type and iNOS knockout animals that were performed to characterize the cellular and molecular events occurring early after immunization.

Based on those experiments, Dr. Rao and colleagues proposed the following sequence to describe the pathway leading to photoreceptor damage in EAU.

"We believe that following immunization with the retinal antigen, a few activated T-cells infiltrate the retina where they induce expression of the TNF-alpha receptor and generate increases in TNF-alpha and other cytokines known to increase iNOS," Dr. Rao explained. "The upregulated iNOS subsequently translocates to the photoreceptor mitochondria and leads to mitochondrial oxidative stress and damage, including protein nitration, lipid peroxidation, and DNA damage, that ultimately culminates in photoreceptor cell apoptosis and vision loss."

Recent Videos
Dr Rick Lewis discusses the FLigHT procedure and ViaLase laser at the 2024 European Society of Cataract and Refractive Surgeons (ESCRS) meeting
Christiana Dinah speaks about her ASRS presentation, Real-World Treatment Outcomes With Anti-VEGF Therapy in Patients With Retinal Vein Occlusion in the UK
Chase Ludwig, MD, shared an overview of his presentation, which covered real-impact of vitrectomy surgery on the progression of AMD at the annual ASRS meeting in Stockholm, Sweden
Thomas Aaberg, MD, gives an update on Neurotech Pharmaceuticals NT-501 device for the potential treatment of retinitis pigmentosa and age-related macular degeneration, including a projected PDUFA date from the FDA at the annual ASRS meeting in Stockholm, Sweden.
Sruthi Arepalli, MD, spoke with Modern Retina about her presentation, "Assessing retinal vascular changes in alzheimer disease with radiomics: A preliminary study of fundus photography" at the annual ASRS meeting in Stockholm, Sweden.
Nathan Steinle, MD, spoke with Modern Retina about the ongoing research on the durability of sozinibercept in combination therapy with anti-VEGF-A treatments at the annual ASRS meeting in Stockholm, Sweden.
Deepak Sambhara, MD, shared an overview of his paper-on-demand, which covered real-world safety and efficacy of aflibercept, 8 mg in the treatment of neovascular age-related macular degeneration at the annual ASRS meeting in Stockholm, Sweden.
Patrick C. Staropoli, MD, discusses clinical characterisation of Hexokinase 1 (HK1) mutations causing autosomal dominant pericentral retinitis pigmentosa
Richard B. Rosen, MD, discusses his ASRS presentation on illuminating subclinical sickle cell activities using dynamic OCT angiography
ASRS 2024: Socioeconomic barriers and visual outcomes in patients with rhegmatogenous retinal detachments, from Sally S. Ong, MD
© 2024 MJH Life Sciences

All rights reserved.