RPE-specific mice suitable for gene activation and inactivation

Article

A tetracycline-inducible Cre mouse line created specifically to study the retinal pigment epithelium (RPE) is suitable for Cre/lox-based gene activation and inactivation in adult RPE, which makes the mice suitable for long-term studies requiring conditional gene targeting.

A tetracycline-inducible Cre mouse line created specifically to study the retinal pigment epithelium (RPE) is suitable for Cre/lox-based gene activation and inactivation in adult RPE, which makes the mice suitable for long-term studies requiring conditional gene targeting.

According to researchers in the Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, China, and the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA, intravitreal Dox delivery can effectively induce productive Cre-mediated recombination in this mouse line, with no apparent Dox or Cre toxicity. The mice have been used for several conditional gene-targeting studies.

The researchers conducted an analysis of Cre expression and function in double transgenic mice that were derived from inducible RPE-specific Cre and Cre-activatable ROSA26 lacZ reporter mice. Cre expression was induced by intravitreal doxycycline. The researchers used reverse transcription–polymerase chain reaction (RT-PCR), immunoblotting, immunostaining and in situ enzymatic assay for β-galactosidase to examine Cre expression and function, and electroretinography and morphometry to examine retinal integrity. They found that Cre expression was significantly elevated by the intravitreal doxycycline injection, resulting in productive Cre-mediated recombination in about 60% of the RPE cells in these mice, with no effect on the integrity of the retina.

"Our work provides a way for more effective use of this mouse line," the researchers wrote. "However, other approaches capable of increasing the efficiency of productive Cre-mediated recombination may permit equal or better utilization of this mouse line. The end-users should explore these avenues that fit their individual experimental goals."

To read the entire study visit the journal Molecular Vision.

Newsletter

Get the essential updates shaping the future of pharma manufacturing and compliance—subscribe today to Pharmaceutical Technology and never miss a breakthrough.

Recent Videos
Omer Trivizki, MD, MBA, a retina specialist from Tel Aviv Medical Center, speaks about VOY-101, a Novel, Complement-Modulating Gene Therapy for Geographic Atrophy at the American Society of Retina Specialists (ASRS) Annual Meeting
João Pedro Marques, MD, MSc, PhD discusses a retrospective study of 800 patients with inherited retinal diseases during the American Society of Retina Specialists (ASRS) annual meeting
Christine Curcio, PhD, of the University of Alabama at Birmingham Heersink School of Medicine, shares histology update and revised nomenclature for OCT with Sheryl Stevenson of the Eye Care Network and Ophthalmology Times
© 2025 MJH Life Sciences

All rights reserved.