Latex bead injection model useful for studying retinal ganglion cell loss

Article

A new model for latex bead injections demonstrates that this is a viable approach to increasing IOP and inducing loss of retinal ganglion cells in rats, said Rebecca M. Sappington, PhD, research fellow, Vanderbilt University, Vanderbilt Eye Institute, Nashville.

A new model for latex bead injections demonstrates that this is a viable approach to increasing IOP and inducing loss of retinal ganglion cells in rats, said Rebecca M. Sappington, PhD, research fellow, Vanderbilt University, Vanderbilt Eye Institute, Nashville.

Using a model adapted from earlier designs, Dr. Sappington and colleagues injected fluorescent latex beads 15 mm in diameter into the anterior chamber of one eye and saline into the other eye in a group of adult Norway Brown rats.

Investigators used a tonometer (Tono-Pen, Reichert Inc.) to measure IOP in awake rats and used the mean of 25 measurements to calculate changes over time. They also measured axonal area and loss of axons and performed histologic examinations. They were able to elevate IOP for up to at least 5 weeks by giving the rats two injections of beads; IOP levels increased by 30% to 40% over this period. A single injection reduced IOP about 30% over 2 weeks.

Investigators also observed that a 2.5-ml injection produced a slow rise in IOP, while a 5-ml injection produced a large initial increase. In addition, after 2 weeks of elevated IOP, eyes injected with the higher dose of latex beads showed a greater reduction in distal nerve retinal ganglion cells than in proximal nerve cells. In contrast, eyes that had been given the 5-ml injection of beads showed the same pattern of axon loss in the proximal and distal nerves, Dr. Sappington said. At 5 weeks, more severe axonal loss was again found in the distal nerve than in the proximal nerve in eyes that had received the smaller injection of beads. In eyes receiving the larger injection, the loss pattern remained consistent between the two types of nerves.

Newsletter

Join ophthalmologists across Europe—sign up for exclusive updates and innovations in surgical techniques and clinical care.

Recent Videos
Christine Curcio, PhD, of the University of Alabama at Birmingham Heersink School of Medicine, shares histology update and revised nomenclature for OCT with Sheryl Stevenson of the Eye Care Network and Ophthalmology Times
SriniVas R. Sadda, MD, FARVO, shares key points from his retina presentation at the International SPECTRALIS Symposium
Robert Sergott, MD, describes fluorescence lifetime imaging ophthalmoscopy (FLIO) and the International SPECTRALIS Symposium – And Beyond (ISS) in Heidelberg, Germany.
Rayaz Malik, MBChB, PhD, a professor of medicine at Weill Cornell Medicine - Qatar, spoke with Ophthalmology Times Europe about his presentation. It's titled "An eye on neurodegenerative diseases: Challenging the dogma" at the International SPECTRALIS Sympsoium. In conversation with Hattie Hayes, Ophthalmology Times Europe
Anat Loewenstein, MD, describes her presentation on remote imaging for age-related macular degeneration and geographic atrophy at the International SPECTRALIS Symposium, in conversation with Hattie Hayes of Ophthalmology Times Europe
Tyson Brunstetter, OD, PhD, a US Navy Aerospace Optometrist at the NASA Johnson Space Center in Houston, Texas, shares key takeaways from his keynote at the International SPECTRALIS Symposium (ISS)
Rayaz Malik, MBChB, PhD, shares his presentation, titled An eye on neurodegenerative diseases: Challenging the dogma, at this year's International SPECTRALIS Symposium
At the Retina World Congress, Siegfried Priglinger, MD, speaks about ensuring the best outcomes for preschool-aged patients
At the 2025 ASCRS meeting, Robert Ang, MD said small aperture IOLs can benefit all patients, especially those with complex corneas or who have undergone previous corneal refractive surgery
© 2025 MJH Life Sciences

All rights reserved.