INTRODUCTION
I have been a refractive surgeon since 1985 when I started to perform radial keratotomy procedures, and I began to perform laser vision correction surgery in 1993. Since 1997, I have used several different techniques and technologies to treat patients with presbyopia, including conductive keratoplasty, laser-assisted presbyopia reversal, corneal inlays, and intracocular lenses (IOLs).

In 2017, after learning more about corneal based options for presbyopic patients in a training course at the London Vision Clinic, London, England, I incorporated the PRESBYOND® Laser Blended Vision software (Carl Zeiss Meditec AG) into my practice. This software enables me to offer corneal treatments for this patient group. Eight months later and having treated almost 60 patients, I was impressed by the excellent results achieved with this customized LASIK procedure. I had even performed it in my wife and in my 91-year-old father who had previously undergone cataract surgery in both eyes with implantation of monocapsular IOLs*. Therefore, I felt I was thoroughly familiar with the experiences and outcomes of individuals who had the procedure.

Personally, I never needed any refractive correction throughout my life until I developed presbyopia. At the age of 52, I began needing to use glasses for reading. I was able to read small print without any problem. I felt no discomfort or uneasiness during the procedure. The only problem I encountered postoperatively was that I noticed halos while driving at night. This symptom, however, disappeared within 45 days after the surgery.

For surgical planning, the preoperative examination also includes measurement of manifest and cycloplastic refraction and evaluation for eye dominance and amblyopia. The refraction profile is custom-designed for each patient using the preoperative PRESBYOND software for the CRS-Master® workstation (Carl Zeiss Meditec AG) that takes into account preoperative ametropia, pupil size, and spherical aberration along with the functional age of the eye.

DISCUSSION
The corneal procedure using the PRESBYOND software is a customized laser vision correction approach for treating patients with presbyopia. It combines a small amount of anisometropia (<1.5 D) with a controlled amount of spherical aberration to increase depth of field and provide a continuous range of vision from far to near. It can be used for myopic, hyperopic, astigmatic and emmetropic presbyopia correction in both phakic and pseudophakic patients.

Although I continue to perform other procedures to treat patients with presbyopia and cataract, I am only offering the option of PRESBYOND to patients without cataract. For the latter group, I believe this corneal approach is a better choice than lens exchange with implantation of a multifocal IOL since in my experience there are hardly any problems like halos or contrast sensitivity after using PRESBYOND.

The only problem I encountered postoperatively was that I noticed halos while driving at night. This symptom, however, disappeared within 45 days after the surgery.

INTRODUCTION
I have been a refractive surgeon since 1985 when I started to perform radial keratotomy procedures, and I began to perform laser vision correction surgery in 1993. Since 1997, I have used several different techniques and technologies to treat patients with presbyopia, including conductive keratoplasty, laser-assisted presbyopia reversal, corneal inlays, and intracocular lenses (IOLs).

For surgical planning, the preoperative examination also includes measurement of manifest and cycloplastic refraction and evaluation for eye dominance and amblyopia. The refraction profile is custom-designed for each patient using the preoperative PRESBYOND software for the CRS-Master® workstation (Carl Zeiss Meditec AG) that takes into account preoperative ametropia, pupil size, and spherical aberration along with the functional age of the eye.

I felt no discomfort or uneasiness during the procedure. Right after surgery, it was remarkable to me that I was able to read small print without any problem.

Already on the first day after surgery, I had excellent near and intermediate vision. I experienced some blurring at far distance, but after 1 week, my far vision was clear, and I obtained my maximum outcome that has remained durable. I did not experience any period of neuroadaptation, and I am very happy with my far, intermediate, and near vision. I am also impressed by the quality of my contrast sensitivity. For example, I am able to read the smallest size font text on my cell phone with minimum light.

The table summarizes my preoperative and postoperative refractive and visual acuity outcomes.

<table>
<thead>
<tr>
<th>Visit</th>
<th>Refraction</th>
<th>Uncorrected visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>OS</td>
<td>OD</td>
</tr>
<tr>
<td>Day 1</td>
<td>0.35 DS</td>
<td>20/20</td>
</tr>
<tr>
<td>Year 1</td>
<td>0.00 -0.25 x 161</td>
<td>20/20</td>
</tr>
</tbody>
</table>

The only problem I encountered postoperatively was that I noticed halos while driving at night. This symptom, however, disappeared within 45 days after the surgery.